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ABSTRACT
The paper studies the optimal use of energy in wireless

networking, the feasibility region of tasks that share a multi-access
channel, and efficient algorithms for determining if a given set of
tasks and resources falls within the feasibility region
.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Feasibility, Optimality

General Terms
Algorithms, Performance, Economics, Reliability, Theory.

Keywords
Network Information Theory, Pareto optimality

1. INTRODUCTION
The emergence of a multitude of applications relying in

wireless networking has resulted in renewed interest in issues of
energy efficiency. Indeed in many instances, e.g. remote sensor
networks, the available energy per device must be considered, in
the short run, as non-renewable. A great number of papers
address through a multitude of vantage points issues of network
capacity and optimal energy use [1,2,3,4,5]. Significant attention
in computer and wire-line networking contexts has also been
received by the problem of on-line scheduling, when the
scheduler does not have complete knowledge of the future
requests arrivals in advance [1]. In these contexts the problem has
been cast as making the optimal decision on committing a single
resource to satisfy current demands in the face of uncertainty
about future demands under constraints of non-preemptive
commitment. A situation of wireless communication presents
major complications to this formulation. Among these
complications are cooperative nature of the problem due to
possibility of multi-user detection, multiple resources, e.g.,

wireless bandwidth and transmission power, to be allocated,
and, possibility that some resources, such as battery power,
may not be renewable within the time horizon in question.

In this paper we discuss a model for on-line transmission
scheduling in a wireless multi-access system and present some
initial analysis results for this model. The model assumes that at
any moment each source has limited battery energy and specific
deadlines for transmitting data associated with different

applications. Resource allocation problem include decisions on
wireless bandwidth sharing and battery energy expenditure rates.
The goal of resource allocation is to maximize the weighted sum
of the residual battery energies for different sources, given delay
deadlines and current battery energy levels. Since the
corresponding weights reflect the expectations on future request
arrivals, which are not completely known, in this brief paper we
concentrate on approaching the Pareto optimal frontier with
respect to the residual battery energies subject to the constraints
on delays and numbers of transmitted bits.

The paper is organized as follows. Section II describes the
model for on-line resource allocation in a case of multi-access
system. Section III states the main result: that the proposed model
can be reduced to finite-dimension, convex optimization problem,
and thus is computationally tractable. Also, section III briefly
presents some structural properties of the optimal and suboptimal
solutions. Section IV briefly discusses feasible region: all sets of
initial battery energies, numbers of bits for each application to
transmit and deadlines for transmitting data associated with each
application, for which the transmission scheduling exists. Finally,
conclusion very briefly summarizes the proposed framework and
discusses future research.

2. MODEL

There are S sources Ss attempting to transmit

information to the same destination. Initially, at the moment

0t , each source s has battery energy sE and skB bits to

transmit with deadline kTt  , Kk ,..,1 , where without loss

of generality we assume that KTTTT  ..0 210 . We

characterize the system performance by the vector of the residual

battery powers for all sources ),..,( 1 KWWW  . The residual

battery power for a source Ss is
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where the source Ss transmission powers )(tps and

transmission rates )(trs at a moment 0t satisfy the

following constraints [1]:
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Our goal is to find the Pareto optimal frontier with respect to

the vector of the residual battery powers ),..,( 1 SWWW  over

all

],0[,,..,1,0)(,0)( kss TtSstptr  subject to

constraints (1)-(4). It is known [6] that this Pareto optimization
problem is equivalent to maximization of the weighted sum of the

residual battery powers SWW ,..,1 ,  s ssave WW  with all

possible weights 0,1:  ss ss  .

Because energy is the rare resource to be preserved, no
reasonable schedule can satisfy all of the inequalities (4) above as
strict inequalities and each active source (i.e., energy expending)
at all times be bound by at least one equality. Sets for which the
corresponding (4) inequality holds with the equal sign are
important; they determine the impact of small changes in power
on the information transfer rates. We prove that at any time the
sets for which (4) holds as equality are linearly ordered by
inclusion and that the set of all active sources satisfies (4) as
equality. A somewhat inexact but nevertheless informative
analog in the discrete world would be slot-renting in such a way
that slot k, k=1,2,...,, is rented for 2k-1 currency units. Whenever
a set of sources has rented M slots, the joint expense must be no
less than 2M-1 currency units with equality iff the sources in
question rented the first M slots.

3. Main Results

Consider class of schedules },{ sksk pr with constant

transmission and power rates for each source Ss ,..,1 in each

of the intervals ],[ 1 kk TT  , Kk ,..,1 : 0)(  sks rtr ,

0)(  sks ptp , where it is assumed 01 kT . For this

class of schedules conditions (1)-(4) take respectively the
following forms:
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We prove that the Pareto optimal frontier with respect

to the vector of the residual battery powers ),..,( 1 SWWW 

),..,( 1 SWWW  over all possible schedules

],0[,,..,1,0)(,0)( kss TtSstptr  satisfying

(1)-(4) is attainable by using schedules },{ sksk pr satisfying

(5)-(8). This result allows us to reduce finding the optimal
schedules resulting in the corresponding Pareto frontier to

KS ||2 -dimensional convex (but not necessarily strictly

convex) optimization problem. This is a direct consequence of
the convexity of the logarithm function [7].

The study of the different schedules that may produce a

Pareto-optimal vector ):( SsWs  leads us to consider two

concepts: (a) The (S’,k) pairs for which (8) holds as an equality
while psk>0 for all s in S’; in which case we will call S’ exact for
the k-th interval, and (b) Schedules which satisfy as few as
possible of the restrictions (7) and (8) as equalities; such
schedules will be called minimally constrained.

We prove that: (a) For each interval ],[ 1 kk TT  , the

exact sets are linearly ordered with respect to inclusion. (b) For

every optimal schedule and every interval ],[ 1 kk TT  , the set of

all sources expending energy in ],[ 1kk TT is exact. (c) If a

schedule is optimal, then the total power is a non-increasing
function of time. (d) If the total power in interval

],[ 1 kk TT  exceeds the total power in ],[ 1kk TT , then

every source active in the first interval is either satisfies
constraint (7) as equality or is a member of an exact set for
which the total power does not exceed the total power in

],[ 1kk TT (e) If two minimally constrained schedules lead

to the same Pareto optimum vector, then they satisfy the
same instances of (7) as equality, have the same exact sets
for every interval, and over each exact set S’ for

],[ 1 kk TT  the ],[ 1 kk TT  -aggregate-power-expenditure of

the sources in S’ is schedule independent.
Indeed (a) and (b) are reformulations of the

structural results. Statement (c) states that if aggregate
power in the k-th exceeds the aggregate power in the j-th,
j<k, then a better schedule can be devised if any source that
is bound through a single exact set in the k-th interval transfers
energy to the j-th interval. Condition (d) states that if the
schedule is optimal the aggregate power in the j-th interval
exceeds the aggregate power in the k-th, j<k, then no source s can
profitably transfer power from j-th to the k-th interval either
because corresponding inequality of type (7) will be violated or
because the drop in information transfer rate in interval j



(determined by the aggregate power the smallest exact set
containing s) exceeds the gains in interval k. Finally, (e) is based
on the simple fact that when two schedules are available, a third
feasible schedule can be constructed by averaging the transfer
rates and the power consumption rates. Among the constraints of
type (7) only those which hold as equalities for both of the
original schedules, will hold as equalities for the third. And
among the constraints of type (4) only those which hold as
equalities for both of the original schedules and for which the
aggregate power is the same for both schedules will hold as
equalities for the third

Some interesting results can be proven if each source
has a single meaningful deadline to meet, i.e., for each s, all Bsk

but one are zero. For this particular case we can prove that each
minimally constrained schedule can induce an equivalence
relationship ~ and a partial ordering  in S such that (a) if

sources α and β are both active in ],[ 1 kk TT  then  ~ if

and only if they belong to the same exact sets for ],[ 1 kk TT  ; (b)

if sources α and β are both active in ],[ 1 kk TT  then   if

and only if the smallest exact set for ],[ 1 kk TT  that contains α

does not contain β. (c) If sources α,β,γ, and δ satisfy

 ~ ,   , and  ~ , then   .

In addition given a vector

),..,1,:,,,( KkSsBETW sksks  , we develop an

algorithm, which can determine if this vector is feasible, i.e.,
constraints (5)-(8) can be satisfied with some schedule

},{ sksk pr , and if so produces such a schedule. The algorithm

has low complexity and easy to implement in real-time. Due to
limited space we do not describe the algorithm formally.
Intuitively, given the power expenditures by sources, the
algorithm assumes the “most altruistic” rate assignment by each
source. In terms of the slot-analogy, the algorithm would have
source #k “buy” the most expensive available slots in the first k
intervals which are compatible with its information transfer
requirements and energy budget. In our case of course the
problem is continuous and the algorithm will be modified as
follows:
 a “bottom x” water filling algorithm for source #k is a water

filling algorithm for the first k intervals that acts as it
whatever is available below level x is impermeable, and

 if feasible schedules exist, one –not necessarily an optimal
one- can be found by determining for each k a level x=x[k]
so that given the preceding power allocations, a bottom-x
water filling algorithm will satisfy the information transfer
requirements of source #k while using all available energy
for said source.

4 EXAMPLES

For lack of space we will only show the ),( 21 BB and

),( 21 TT feasibility areas of a two source, two tasks system,

while noting that the graphical interpretation of the model
constraints provides a better guide to the qualitative aspects.

5 CONCLUSION

This paper has proposed a model for on-line
transmission scheduling in a wireless multi-access system and
presented some initial analysis results for this model. The goal of
resource allocation is to maximize the weighted sum of the
residual battery energies for different sources, given delay
deadlines and current battery energy levels. Current efforts
include (a) developing a model for adjusting the corresponding
weights to reflect expectations on the future request arrivals, and
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1c 1d

Diagrams 1a-1d show
power use for the red
points (right to left) on
the frontier

1b

Figure 1. (B1, B2) feasibility region

Figure 2. A (T1 ,T 2) feasibility area



(b) decentralized solution to the corresponding optimization
problem, based on Lagrange multiplies associated with the
constraints.
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